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ABSTRACT 

The phase structure of an SU(2) lattice gauge system which interacts 

with Higgs fields transforming under the fundamental representation of 

the gauge group is obtained with mean field and Monte Carlo methods. 

If the Higgs four-point coupling X is large this theory exhibits a second 

order phase transition for large values of the inverse gauge coupling /3 

which does not, however, divide the parameter space into disjoint phases. 

As X decreases this transition extends to the p = 0 edge parameter space 

and becomes first order for part of its length. The finite temperature 

behaviour of the theory is also examined. The phase transition line 

identified in the zero temperature case appears to be a temperature 

independent feature of the model. However, study of the Wilson line 

operator indicates that there is a deconfining transition present in the 

Higgs symmetric phase of the theory which scales according to the gauge 

coupling renormalization group equation. 
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1 Introduction 

In the past few years the lattice approach to the study of non-perturbative effects 

in pure non-abelian gauge theories has achieved some remarkable successes. For the 

case of SU(3), for example, the observables measured have included the deconfining 

temperature [l], the latent heat of deconfinement [2], the hadronic mass spectrum 

[3], and the hadronic coupling constants [4]. These calculations suggest that lattice 

techniques may in the future become the premier tool for the non-perturbative 

study of a wide variety of different theories. 

There are, however, a number of technical problems to be solved before this 

possibility is realised. Pure non-abelian gauge theories are among the simplest 

systems to model on the lattice both because the numerical methods needed are 

quite straightforward and because the continuum limit is well understood. How- 

ever, when one introduces dynamical particle fields into the problem things become 

much more difficult. If the fields introduced are scalar fields then the asymptotic 

freedom of the pure gauge system is destroyed [5] and one no longer understands 

the connection between the lattice and the continuum. If fermions are introduced 

then the non-local nature of the fermion interactions increases the magnitude of the 

numerical simulation required a hundredfold. Fermions on the lattice also suffer 

from the notorious doubling problem [6] which obscures the chiral symmetry that 

is such an important feature in many of the systems that we would like to study 

non-perturbatively. 

In this paper we shall begin to address some of these points. The particular 

system which we shall study consists of an SU(2) gauge field interacting with a 

complex Higgs doublet. This system is numerically very simple to examine because 

there are relatively few degrees of freedom involved on any given lattice site and 

because there exist algorithms which efficiently deal with the importance sampling 

that is such a crucial feature of the lattice method. 

More importantly, however, the system has an extremely rich structure and can 

with some simple modifications be used to address almost all of the problems which 

we need to answer. The presence of dynamical particle fields allows us to study the 



FERMILAB-Pub-85/168-T -2- 

effects that such fields introduce onto the lattice. Also, if we are content to treat 

fermions in the quenched approximation, then for weak gauge coupling this model 

allows us to study symmetry breaking effects like those which occur in the standard 

model [7], while for strong gauge coupling we can study some of the confinement 

effects which are so important in preen theories [B]. 

In the present paper we shall confine our attention to the gauge-Higgs sector 

only. This study is a necessary prerequisite to the study of the more complex gauge- 

Higgs-fermion system. We hope to address this latter case in the quenched fermion 

approximation in a future paper. 

The plan of this paper is as follows. Section 2 presents the details of the model 

and introduces our notation. Section 3 discusses a number of limiting cases which 

can arise for special choices of the coupling constants. The properties of these limit- 

ing cases are well understood and therefore provide a reference for the results which 

we shall derive later. Section 4 examines the model in the mean field approxima- 

tion. Section 5 discusses some novel features of the Monte Carlo algorithm which 

we have used. Section 6 presents the results we have obtained from the Monte Carlo 

analysis of the model. Finally, Section 7 presents our conclusions. 

2 The Model 

We shall work throughout on a four dimensional Euclidian lattice with periodic 

boundary conditions. Sites on the lattice will be denoted by the four-vector r = 

(z”,zi, z2,z3), with components zJ‘ chosen to be integer multiples of the lattice 

spacing a. Periodic boundary conditions are imposed by identifying sites with 

components ~9‘ and z@+Lfi, where LJ‘ is the length of the lattice in the nth direction. 

Fundamental links on the lattice are directed line segments connecting sites which 

are separated by exactly one lattice spacing. We shall denote such links by the 

ordered pair (5, z f fi) where z and zz!zfi are respectively the source and sink sites 

of the link and where fi is a vector of length a directed along the positive n-axis of 

the lattice. For notational convenience we shall generally set a = 1. 

The basic fields of the theory are the gauge fields U(z, zIt,G) defined on the links 
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of the lattice and the Higgs fields W(z) d e ne on the sites. Each gauge field is an fi d 

SU(2) matrix constrained so that U(z,z+$) = iYt(z+fi,z). Introduce the matrix 

four-vector C = (l,z’Z), where 8 = (u1,u2,03) are the Pauli matrices. We can then 

parameterize U(5, .r+fi) as 

u(“>“+fi) = U~(Z,Z$jp = uyz, z+fi) + iqz, z+ji) . a’ 

where the components uor are real, and &t(U) = u%* = 1 

(2.1) 

The particular form we adopt for the Higgs fields depends on the representation 

under which those fields transform. Fundamental SU(2) Higgs fields are usually 

denoted by a two-component complex scalar field @, a = 1,2. We shall, however, 

choose to decompose 4 into its real and imaginary parts. Thus the Higgs field will 

be denoted by a four-component real field W”(Z), cy = 0.. .3. Further, we shall 

make use of the matrices C” defined above to write this field as a 2 x 2 complex 

matrix W(z) as follows 

W(5) = w”(z)C” = W”(Z) +iz3 .a’ (2.2) 

Thus, the gauge and Higgs fields have the same form, except that the gauge fields 

are constrained to have unit determinant while the Higgs field determinant can have 

any positive value. In terms of the Higgs doublet 4, W(z) decomposes as 

W(z) = 
i 2::;; ;yY:) = Jz ( ;: $ ) (2.3) 

The action S which we shall study is given by 

s = SC + s, 

(2.4) 

sc = .zu P (l- ~T~[Uo(wv)l) 

S H = T X (;T+‘+($V(z)] - 7)’ 

+ 5 4 ($ [WtWW) 

- g (in [w+(z)U(Z,ZfP)W(~+P)]) 
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In So the sum is over all unoriented plaquettes, while U, denotes the path-ordered 

product around the appropriate plaquette of the gauge matrices sitting on the links 

of that plaquette 

U,(x,p,v) = U(z,x+p)U(x+~,x+~+t)U(x+~+~,x+qU(x+i,,x) (2.5) 

This action exhibits two different SU(2) symmetries. The first, the local SU(2) 

gauge symmetry, is defined by the transformations 

U(z,x+fi) ---f g(x)U(x,x+F)S+(~+fi) 

W(x) + g(4W(x) 
(2.6) 

where the transformation matrices g(z) are SU(2) matrices. The second SU(2) 

symmetry is a global symmetry of the Higgs sector defined by 

W(x) + W(x)h+ (2.7) 

where h is a constant SU(2) matrix. This latter symmetry is a consequence of the 

fact that the Higgs sector has an O(4) z SU(2) 8 SU(2) symmetry when the gauge 

interactions are turned off. 

To generate the naive continuum limit of the action of Eqn(2.4) we make the 

following transcriptions 

qx, x+F) + exp (igads( z) 

-y + -- 
4x 

The limit e + 0 is now straightforward. The action which results is 

S+ 
J 

d4x ;$W’ . j$ 

+ /d4 2 Pd4’(~D”4c) + m24c+4c + 4x(4,‘~c)* 
(2.9) 
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where 
j+Y = ,y2-au2i’-g;i*x2 

Dp = a@+agj+.; 
(2.10) 

This continuum form describes an SU(2) gauge field 2“ interacting with a complex 

Higgs doublet &. Thus we identify g, 4X, and m2 as, respectively, the gauge, the 

Higgs quartic, and the Higgs quadratic bare couplings for an SU(2) gauge theory 

coupled to a single complex scalar doublet. Note also that choosing ms > 0 (7 < 0) 

results in a non-abelian generalization of scalar QED, while m2 < 0 (7 > 0) is the 

spontaneous symmetry breaking choice. 

3 Limiting Models 

The action which we have written down in Eqn(2.4) is a function of three 

independent parameters: the gauge coupling p, and the Higgs couplings X and 7. 

These three parameters define a three dimensional space with limits: 0 5 p < 00, 

0 < X < co, and -co < 7 < 00. We are, of course, interested in determining 

the phase structure of this action for general values of these parameters. However, 

before considering the general problem, it is instructive to review some standard 

results which apply for certain special choices. 

3.1 The Pure Higgs Limit: /3 ---t 00 

If we take p --f 00 then, for each plaquette, +Tr [U,] ---f 1. Thus the gauge 

fields are frozen to pure gauge configurations and we can, without loss of generality, 

set all the U’s equal to the identity. Then, in component notation (Eqn.(2.2)), the 

action becomes 

SH + g (w”(4wQ(x) - w”(x)w”(x+i4) 

+ c A (wygw”(5) - ry 
(3.1) 

2 

This action describes a four-dimensional spin model with an O(4) global symmetry. 

It has a particularly simple form if we take X + 00 with 7 held fixed and positive. 

This limit freezes the magnitude of the Higgs fields wDL to wawU + 7 and, after 
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resealing, the action becomes 

s, + - 7 c W(x)W(x+i;) (3.2) 
2.w 

where 

w”(x) = &P(x) (3.3) 

Eqn.(3.2) describes an O(4) four-dimensional generalized Heisenberg model with y 

playing the role of inverse temperature. 

The phase structure for the Heisenberg model is well understood 191. Providing 

the dimension d is greater than the critical dimension d = 2, two phases will be 

present. When 7 is sufficiently large the Higgs field develops a vacuum expectation 

value, and the O(4) global symmetry is spontaneously broken. Because of the 

presence of massless Goldstone modes, the correlation function (&“(0)2ira(r)) has 

the asymptotic behaviour 

jlI (w(o)~a(~)) -i exp(-y) 

In particular we note that the long-range correlation is nonzero, indicating sym- 

metry breaking in this phase. On the other hand, when 7 is small, the global 

symmetry remains unbroken, there are no massless excitations, and the correlation 

function decays exponentially. Further, the transition between the two phases is 

second order. 

For 7 nonzero and finite, we expect no qualitative changes in this picture. 7 no 

longer has the interpretation of an inverse temperature, but we still expect that no 

matter how small we make X, we can always choose 7 sufficiently large so that the 

potential term, Xys (C”&” - 1)s freezes (C”@) + 1. Then, to show that a Higgs 

phase must always be present, we make use of an infrared bound due to Frohlich 

and Simon [lo]. For the action of Eqn.(3.1), this bound takes the form 

$lil (?zyo)&“(r)) 2 (P(O)V(O)) - 7 

Thus, for 7 sufficiently large, the right hand side of this inequality will be positive 

definite, and the Higgs symmetry will be broken. 
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3.2 The Pure Gauge Limit: 7 + - co 

If 7 < 0 we can rewrite the Higgs potential as 

x (WUWQ - -y)Z = x ((w-wy + 2 1-f wawa + 72) (3.6) 

Then, taking 7 ---t - co forces w0 + 0, since the term 2 ]7] wawol gives very large 

action to all configurations with wQ non zero. Therefore, in this limit, the Higgs 

field drops completely from the problem, and the action reduces to that for a pure 

SU(2) gauge theory 

For space time dimension d = 4, this action has a single confining phase for 

all values of p [ll]. The theory does, however, exhibit a crossover at p sx 2.2 

which separates the regions where strong coupling (small p) expansions and weak 

coupling (large p) expansions are valid. For d > 4, this crossover turns into a first 

order phase transition [ll]. The small 8 sector remains confining, but for large p 

confinement disappears. Instead, the large p phase exhibits Coulomb forces between 

static charges. 

3.3 The Limit: p + 0 

This limit is more easily analyzed if we transform to the unitary gauge. To 

define this gauge transformation, first decompose the Higgs field W(z) into a radial 

field p(z) and an SU(2) spin field V(z). The fields p and V are defined by 

p(x) = Jqqqj = y$zq 

W(z) = P(X) V(x) 

The unitary gauge transformation is then given by 

q”,x+P) + v(x)u(x,x+fi)v+(~+~) 

W(x) --+ w(x)v+(x) 

(3.7) 

(34 
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In the unitary gauge, the action of Eqn.(2.4) takes the form 

s + g P (I- ;T+ol) 

+ 1 (P(x) - p(x)p(ztP);Tr [u(v+fi)l) 
2.11 (3.9) 

+ $ x (P”(Z) -r)2 

Setting 8 = 0 in Eqn(3.9) does not usefully simplify this action. There is 

still coupling between the gauge and the Higgs radial fields even though the gauge 

self-coupling has disappeared. However, if we also set X + co then this situation 

changes. If 7 > 0 then p(z) -+ fi while if 1 < 0, we find p(z) + 0. In either case 

the action becomes completely trivial, and therefore in the combined limit 8 + 0, 

and X -+ 00, the theory can have no phase transitions. 

3.4 The Limit: 7 + 00 

To analyze this limit we shall, as in the last section, make use of the unitary 

gauge transformation introduced in Eqn.(3.8). It will also be convenient to introduce 

a resealed Higgs radial field, ;(z) corresponding to the resealed Higgs component 

field W(z) introduced in Eqn(2.2). The action then takes the form 

+ c 7 (a”(x) - ;(x)P(++P)+r [u(x, x+81) 

+ g xy (p(z) - 1>* 
2 

(3.10) 

where 

PM = fia(x) (3.11) 

Now when we set 7 + 00 two things happen. First the Higgs potential energy 

term forces S(Z) + 1. Then the Higgs kinetic energy forces ;Tr [U(z,s+ji)] + 1, 

which in turn sets U(z, z+fi) + 1, since the Higgs field is in the fundamental 

representation of SU(2). Thus, all of the fields are frozen in this limit, and the 
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theory becomes trivial and has no phase transitions. In contrast to the results of 

the last section, however, we expect the theory to remain trivial in this limit for all 

choices of X. 

3.5 Higgs - Confinement Complementarity 

We can summarize the results of this chapter in the tentative phase diagram of 

Figure 1. For large p we expect the theory to exhibit a single second order phase 

transition at some positive value 7. This transition separates a Higgs sector where 

7 is large and positive from a confining sector where 7 is negative. Further, we 

expect this transition to exist for all finite values of X. None of the other edges of 

the phase diagram are expected to have transitions, at least for large X. Therefore, 

at some point in the interior of the diagram, the Higgs-confinement transition must 

disappear and the two phases merge. Indeed, we are forced to conclude that the 

theory has, in fact, only a single phase since we can move between any two points 

on the phase diagram without crossing a phase transition [12]. 

One should note that this result depends critically on the fact that the Higgs field 

is in the fundamental representation of the gauge group, and that the unitary gauge, 

therefore, completely breaks the gauge symmetry. If the Higgs field transforms 

under some other representation of the gauge group, then the argument used in 

the last section to derive the triviality of the phase structure in the 7 -+ 03 limit 

may no longer follow. That argument required that ;Tr [U] = 1 imply U = 1. 

If, however, the Higgs field is in the adjoint representation of the gauge group, for 

example, then requiring Tr[U] K 1 constrains U so that U E 2, where 2s is the 

center of SU(2). Therefore, the 7 + co limit in this case reduces the theory to a 

pure Zr gauge theory which does have a non-trivial phase structure, and the phase 

transition line entering at large p no longer needs to end somewhere in the interior 

of the model’s parameter space. Instead, it can join the transition line which we 

expect to be entering at large 7 where there is a 2s phase transition, and the adjoint 

model can therefore have two distinct phases. 
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4 The Mean Field Approximation 

The basic premise of the lattice mean field approximation is that in a large 

space-time dimension a particular field will have a large number of neighbours, 

and therefore will be insensitive to the individual fluctuations of those neighbours. 

Instead, the field in question will react mainly to the average or mean field generated 

by all of its neighbours. The mean field approximation is particularly suitable for 

determining phase structure. One imposes self-consistency to obtain the mean fields 

as functions of the parameters in the theory. Then phase transitions show up as 

singularities in the mapping from parameters to mean fields. 

4.1 The mean field approximation with no gauge fixing 

There are a number of different ways of deriving the mean field approximation 

[13]. We shall adopt a particularly simple approach which makes use of Peierls’ 

Inequality, 

bp (A)) 2 ew ((4 1 (4.1) 

to estimate the partition function 2, or equivalently the free energy per site F, 

defined by the following equations 

z = /n d[W(r)] nd[U(s,z+fi)l exp C-S) 
2 24 

(4.2) 
F= + In(Z) 

8 

where S is the action introduced in Eqn.(2.4) and where d[U] and d[W] are, re- 

spectively, the integration measures for the gauge and Higgs fields. N. denotes the 

number of sites on the lattice. 

The first step in generating the approximation is to introduce a mean field action 

5’~p in which all non-local interactions are replaced by interactions with mean fields. 



FERMILAB-Pub-85/168-T -ll- 

Inspection of Eqn.(2.4) suggests the following choice 

S MF = g - :Tr [Ut(z,z+P)A(s,z+F)] 

+ 5 x (P2(+7)2 +4&c) 

+ F - ($ [“+(x,B(x)]) 

(4.3) 

The fields A(s, s+F) and B(r) are the mean fields which simulate the influences on 

any given field of its neighbours. Both mean fields are chosen to be 2 x 2 complex 

matrices. Note also that the fields p(z) appearing in the second line of Eqn(4.3) 

are the Higgs radial fields introduced in Eqn.(3.7). 

Given the mean field action SMF, we can define the mean field expectation value 

WA4F of an operator 0 as follows 

( ’ jMF = &,(A,B) 
’ /~d[Wl nd[Ul 0 exp (-Sm) (4.4) 

where 

&(A,B) = /~d[WlflWlexp(--SWP) 
Then the partition function Z (Eqn.(4.2)) is given by 

(4.5) 

z = .%I (exp (-s + SMF))MF 

If we now apply the inequality of Eqn.(4.1) we find 

(4.6) 

z 2 Zo exp (- (s - SIMF)MF) 

or in terms of the free energy per site 

F 2 FMF(-%B) = + (In (20) - (S - SMF)M~) 
L 

(4.7) 

(4.8) 

Eqn(4.8) is the fundamental bound we require to generate the mean field ap- 

proximation. The left hand side of this inequality is the free energy of the full 

theory. The right hand side is a lower bound for this free energy which depends on 

the arbitrary mean fields A and B. Thus, by maximizing F,p with respect to A 



FERMILAB-Pub-85/168-T -12- 

and B, we can determine these mean fields as functions of the parameters in the 

theory. 

In principle the best mean field approximation is obtained by maximizing F.WF 

over all possible choices for A(%, r+,Q) and B(z). Unfortunately such a procedure is 

much to difficult for our purposes. We shall instead adopt the following simplifying 

ansats 

A(z,r+fi) = a (4.9) 

where a and b are position independent constants. In this special case we find 

F~8(a,b) = 24 p [G’(a)]” + 4 G’(a) [H’(b)]’ 

+ 4 [G(a) - uG’(a)] + [H(b) - bB’(b)] 
(4.10) 

where G(a) and H(b) are defined by 

Jdrr3 exp(--xr4 - (4-2X7)+) (21i(br)/br) 

J dr r3 exp (-Xr* - (4 - 2x7) r’) 

(4.11) 

FMF is now a function of just two variables, and we shall need to find the pair 

of coordinates, (amax, b,,), of the global maximum of FM~ as a function of the 

parameters p, X, and 7, in order to determine the phase structure. 

The results of the numerical determination of the mapping from parameter space 

to mean field maximum are plotted in Figure 2. This figure show the phase structure 

as a function of p and 7 for X = 0.1 and X = 1.0. Solid lines represent first order 

transitions, and dashed lines represent second order transitions. 

If we refer back to the results of Section 3 we can identify the origin of the 

various transitions shown in these figures. The first order transition occurring for 

7 negative separates phases with amsll = 0 and a,, # 0. The Higgs field maximum 

b max, however, remains constant (b,, = 0) across the transition, and so is not 

actively participating in the physics of the transition. Further, we note that this 

is the region of the phase diagram where we expect the action to reduce to that 

of a pure SU(2) gauge theory. Thus, the transition we are seeing is simply the 
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confinement-coulomb phase transition which we expect to occur for pure SU(2) 

gauge theories in all dimensions d > 4. For d = 4, though, we should be aware that 

this transition may be replaced by a crossover region, as occurs in the pure gauge 

theory. 

The second order transition occurring for ~3 large also has a simple explanation. 

Analysis of the data used to obtain the phase structure shows that the gauge mean 

field amax remains constant across this transition, suggesting that the gauge fields 

are simply spectators in this transition. Also we note that this is exactly the re- 

gion of parameter space where we expect the action to reduce to that of a pure 

Higgs theory. Thus, this transition appears to be a second order Higgs symmetry 

breaking transition. Also, in contrast to the gauge transformation discussed in the 

previous paragraph, we do expect this transition to be present when we analyze the 

Monte Carlo results, since the critical dimension for the Higgs symmetry breaking 

transition is d = 2. 

The final transition line, occurring in the small p sector of the model’s parameter 

space, is much more complicated. Both mean fields show significant change across 

this transition. Therefore, we must expect that both fields are actively participating 

in the dynamics of the transition. Furthermore, the data suggests that the transition 

in question appears to be a smooth continuation of both the second order Higgs 

symmetry breaking transition and the first order confinement-coulomb transition. 

We interpret this transition, therefore, as a nontrivial combination of the other two 

transitions in the model. Also it is no longer clear whether or not this transition 

is a real feature of the model, since the obvious interplay between the gauge and 

Higgs sectors makes any predictions based on their separate properties impossible. 

4.2 The Full Action in the Unitary Gauge 

The discussion in Section 3 on Higgs-confinement complementarity has led us to 

expect that the model we are analyzing has only a single phase. We should therefore 

expect that the combination gauge-Higgs transition identified in Figure 2 is at least 

partially a mean field feature, since this transition does separate parameter space 

into two distinct phases. We have already identified one way this might occur. 
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Another possibility which we shall consider in this section concerns the presence of 

gauge degrees of freedom in the theory. The presence of such redundant degrees of 

freedom raises the possibility that those degrees of freedom may undergo a spurious 

transition which is not reflected in the physical observables. We shall therefore 

consider in this section how the results presented above change when the redundant 

degrees of freedom are integrated out. 

The unitary gauge action is given in Eqn(3.9). To generate a mean field version 

of this action we need to decide on appropriate forms for the mean fields to be 

introduced and for their interactions with the gauge and Higgs fields. The form 

which we have choosen is 

SgF = g - ;Tr [U+(v+b)A(w+6)] 

(4.12) 

+ c - ~(4 W 

where A(z,z+fi) is a 2 x 2 co:pplex matrix field, and B(z) is now a one component 

real field. Note that the Higgs spin field V(z) (Eqn.(3.7)) has dropped from the 

problem. 

To determine the phase structure we need to maximize the mean field free energy 

with respect to the fields A(z,z+,k), and B(z). As before we adopt the following 

ansatz to simplify this problem 

A(z,z+@ = a B(r) = b 

where a and b are position independent constants. With these definitions, the only 

difference between the mean field free energy in the unitary gauge and that when no 

gauge is imposed is in the definition of the Higgs generating function H(b), which 

is now given by 

H(b) = In 
Jdr r3 exp (-Xr4 - (4 - 2X7) r”) exp (br) 

/ dr 9 exp (-Xr’ - (4 - 2x7) r”) 
(4.14) 

The free energy itself takes exactly the form given in Eqn.(4.8). The change in the 

Higgs generating function, however, does markedly change the qualitative behaviour 
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of the mean field phase structure. The first effect is the disappearance of the second 

order Higgs symmetry breaking transition. This result is to be expected, since we 

understand this transition to be a bulk effect occurring for the Higgs spin degrees 

of freedom which have been integrated out in this gauge. 

A more important result of the gauge choice is shown in Figure 3, which plots 

the Higgs mean field component of the global maximum of the free energy as a 

function of /3 for various values of 7. For 7 small, these plots show a discontinuity 

in b,, as p increases. We interpret this discontinuity as evidence of the first order 

confinement-Coulomb transition which we have seen above. As 7 increases however, 

the size of the discontinuity decreases and eventually disappears. Similar behaviour 

is seen when the Higgs mean field component is plotted against -y and the gauge 

field component is plotted against both p and 7. 

The conclusions we draw from this behaviour are shown in Figure 4, which plots 

the phase structure for two different values of X as predicted by the unitary gauge 

mean field approximation. The interesting feature to note is that, for X = 1.0, the 

first order transition shown here does not separate the model parameter space into 

two phases. Rather, the transition line ends in the interior, and it is possible to 

move from any point in the parameter space to any other point without crossing a 

phase transition. 

6 The Monte Carlo Method 

Our basic aim in what follows will be to measure lattice expectation values of 

functions O(U,W) of the gauge and Higgs fields by Monte Carlo methods [14] [15]. 

These expectation values are defined by the functional integral 

(W,W)), = S II,,, Wh~+fi)l II. W’(41 WJ,W) exp C-S P,W) 
S II,,, W(z,z+P)l II, 4Wk)l exp C-S W3W)) 

(5.1) 

The Monte Carlo approach approximates this integration by an average of 

O(U, W) over a set of configurations {{U, W}i} of the fields U(z, z+fi) and W(z), 
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which are chosen from the set of all possible configurations with a weight 

II WI II @‘I ew C-S V,W)) 
P(‘“‘w’) nd’U1nd[W1 = Jnd[U]nd[W] exp(-S(U,W)) (5.2) 

The utility of this approach is that it is possible to develop algorithms suitable for 

use on computers to generate appropriately distributed sets of configurations. 

These Monte Carlo algorithms all follow the same general pattern. One first 

chooses some initial configuration {U, W},. Th en one generates a sequence of new 

configurations {{U, W}i , i = 0, . . .} iteratively. At each iteration step a new con- 

figuration is generated from the previous configuration by changing or “updating”, 

one field at a time, some large subset of the fields of the old configuration. 

There are two commonly used techniques to generate the sequence of configura- 

tions we need [15]. In the heat bath method, one chooses a new value for the field 

being updated with a weight proportional to exp(-S(new)). This method produces 

a new value independent of the original field value, but of course dependent on its 

environment. In the standard Metropolis method, one first chooses a new value 

randomly from some subset of the possibilities. This new value is accepted uncon- 

ditionally if it reduces the action of the configuration, but if the action is increased, 

then the new value is accepted only with a probability exp (-S(new) + S(old)). The 

Metropolis updated variable depends both on its environment and on its previous 

Numerically, the heat bath method is usually the harder to implement, but it has 

the advantage that the sequence of configurations it generates is usually significantly 

less correlated than a similar Metropolis generated sequence. For this reason, the 

extra effort involved in coding a heat bath scheme, if it is at all possible, is usually 

well justified, since fewer configurations are needed with the heat bath approach to 

generate results of a similar accuracy, and so simulation time is decreased. 

For the action of Eqn.(2.4) we can divide the updates we need to do into two 

parts: the update of the gauge fields U( I, z+,k), and the update of the Higgs fields 

W(z). U(z, z+fi) is an SU(2) field and can be updated with the SU(2) heat bath 

algorithm of Creutz [16]. Let us therefore consider the more difficult problem of 

implementing a heat bath algorithm for the Higgs field update. It is convenient first 
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to decompose W(z) into its radial p(z) and spin V(z) degrees of freedom (Eqn(3.7)). 

In order to update these fields at a site z, we need to generate new fields pn(z), and 

Vn(z) with a weight 

1’(~.(4,V-a(4) d(+pn(~) dP&)l 
cc exp( -SH(P~(Z),V,(~),EH(~)) ) d(z)dp~(~) W~(Z)I (5.3) 

where 
Sx(p(z),V(~),Ex(~)) = UP” + (4-2X7) P’(S) 

(5.4) - ~(4 ;Tr [V+WH(~] 

and 

E,&) = ~U(z,+i)W(zhfi) (5.5) 
P 

The function SE appearing here is simply the set of terms in the action of Eqn(2.4) 

which couple to the fields p(z) and V(z) which are being updated. 

To generate variables according to a particular weight function, one generally 

must be able to invert the indefinite integral of the weight function. Unfortunately 

an analytic form for the indefinite integral of Eqn.(5.3) does not exist, and a nu- 

merical inversion is not feasable since the term in S, (Eqn.(5.4)) which is linear in 

V has coefficients (EH) which change every update and we would therefore need 

to calculate a new inversion table each update. This result is not really a surprise. 

Most interesting theories suffer the same problem, which is why Metropolis update 

schemes are so common in the literature of lattice gauge theories. In our case, 

however, it is not necessary to resort to the standard Metropolis scheme. We have 

instead used an alternative scheme which retains much of the flavour and advantages 

of a heat bath update [17]. 

In order to describe this scheme, we first rewrite the action SJJ as follows 

SJJ(P,V,EH) = S;(P) + S;(V,EH) + s&~,v,&) 

s;(P) = Xp4+np2 

q?(V,EH) = - a gT’ [V’EH] (5.6) 

$r(P,v,%) = (4-&n) P2 + (a-p) :Tr [VtEH] 
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Notice that in splitting .S’x into three pieces we have introduced two arbitrary con- 

stants IC and CL 

The update algorithm which we shall use consists of the following steps. First 

the environment matrix EH is calculated. Then new fields P,, and V,, are generated 

with weights 

Pp(pn) p&n = exp (-S,” (P,)) p”,dp, 
(5.7) 

Pv(Vn) @‘,I = =P (-S; (K&r)) d[Vn] 

Notice that the decomposition of S, defined in Eqn.(5.6) together with the intro- 

duction of the constant a: has enabled us to separate the generation of the Higgs 

radial and spin degrees of freedom. 

Once the trial values p. and V, have been generated, we can correct for not 

including the term S& by doing a Metropolis-like acceptance test. The difference 

&Sk = SA(p,,,Vn,E~) - S&(po,Vo,E~), where p. and V, are the old field values 

on the site being updated, is calculated. If LLSh 5 0, then p. and I’, are accepted 

automatically as the new field values. If, however, LLS& 2 0, ~a and V, are accepted 

only with probability exp(-AS&). 

There are a number of interesting features to this algorithm. First, the new 

fields are chosen almost as if one is doing a heat bath update. All possibilites 

are considered, and serious consideration is given to the eventual desired distribu- 

tion. In the standard Metropolis approach, one is usually forced to choose new 

trial fields by making a small perturbation on the old fields, which process further 

increases the correlations between configurations. The alternative of choosing new 

fields randomly from all the possibilities generally results in field values so far from 

equilibrium that they are seldom accepted. 

A more important property to note is the fact that the algorithm satisfies de- 

tailed balance [15] independently of how one chooses the parameters 01 and K. Thus, 

these variables can be chosen to maximize the ratio of new fields accepted to new 

fields rejected during the Metropolis test at the end of the update. Experimentally, 

the best choice for K appears, not unexpectedly, to be that value which generates 

new fields pn with an expectation (pi)spo, which is equal to the full theory expecta- 

tion value (P’)~ for the Higgs radial field p. CY is determined by the choice ~1 = (P)~. 
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Both these choices require information which is not usually available at the begin- 

ning of a Monte Carlo. So at the start of a run, a: and IC are estimated, and then 

as the run progresses and the required expectation values become available, the 

original estimates are adjusted. 

6 Monte Carlo Results 

We come now to the presentation of the numerical results we have obtained for 

the phase structure of the action of Eqn(2.4). To keep things simple at first, we 

shall concentrate on the data we have obtained from simulations with the Higgs 

four-point coupling fixed at X = 0.1. For this special case we shall discuss in some 

detail the evidence for the various transitions which are present. Later sections will 

present the phase picture for other values of X. Finally, we shall discuss how these 

results compare with the mean field results obtained in Section 4. 

Some of the results which we shall discuss here have been reported before in 

the literature. Lang, Rebbi and Virasoro [18] h ave performed simulations for the 

special case X = 00, where the radial Higgs field drops from the problem. Kuhn&, 

Lang, and Vanes [lQ] have identified the phase structure for X large and observed 

no qualitative changes in the second order transition reported by the first group of 

authors. 

6.1 Observables 

One significant problem to be faced when one performs any lattice Monte Carlo 

simulation is the vast amount of data generated. For the case at hand, for example, 

if we choose to work on a 4 x 4 lattice, then each new configuration generates 5120 

new numbers to be stored and analyzed. Since we expect, in the end, to have to 

examine hundreds of thousands of different configurations in order to extract the 

information we are searching for, it is apparent that only very limited data can 

be stored for each configuration. Generally, therefore, one chooses a few special 

operators or observables which are to be measured as the different configurations 

are generated, and once these measurements have been made the configuration 
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details can be discarded. 

The operators we have chosen to use are defined as follows 

Os(U,V) = ( S(U,W) ) 

Ou(U) = ( (l- +w) ) 

O,(P) = (PW) 

O”(U,V) = ( (l- iTr [vt(,)u(,,5+P)v(3:+P)]) ) 

O&J) = 
( 1 

iTr &((t,q,(t+1,2’)) 
t=1 I) 

(6.1) 

where U(z, z+fi), p(s), and V(z) are the gauge, the Higgs radial, and the Higgs spin 

fields, respectively, and where iVt denotes the number of sites in the time direction. 

One should note that these operators are not order parameters for the transitions 

discussed in Section 3. Indeed, Higgs-confinement complementarity is based on the 

observation that there are, in fact, no order parameters at all for this theory, and 

that in the end all the different phases will join smoothly onto each other. However, 

they do behave in some ways like order parameters, and do enable us to identify 

properties intrinsic to the different phases we are searching for. 

Of the five operators we have introduced, the simplest is probably 0s. This 

operator measures the total action of a configuration, and is therefore the most 

significant signal of any interesting dynamics which may be occurring in a particular 

simulation. The operators, Ou, 0,, and 0” probe the gauge, the Higgs radial, and 

the Higgs spin sectors, respectively, of the theory. Note especially that each of these 

operators is gauge invariant. Finally 0~ is the Wilson line operator for the gauge 

sector. This operator measures the free energy of an infinitely massive quark which 

couples only to the gauge sector of the theory [20]. 

If we recall for a moment the results of the mean field analysis of Section 4, 

then the reasons for our choice of operators becomes clear. Consider first the gauge 

sector crossover expected for 7 negative (Section 3.2). To the left of this line, for 

p small, the gauge fields fluctuate wildly and we expect, therefore, that 0~ --t 1. 

To the right, on the other hand, for p large, all the gauge matrices are close to the 
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identity, and therefore 0~ ---t 0. Thus, a change in 0~ from a value close to one to 

a value close to zero suggests the presence of a gauge sector crossover. 

The other well understood transition discussed in Section 4 is the Higgs sym- 

metry breaking transition occurring for large p. In the symmetry broken phase, 

perturbation theory suggests that 0, cc 7, and that 0” -+ 0, since we expect the 

Higgs fields to sit at the bottom of the symmetry breaking potential with their 

spins aligned. If, on the other hand, the symmetry is unbroken, then there is no 

correlation between the spins on different sites, and we find 0” + 1. Also, 7 no 

longer sets the magnitude of the Higgs radial field, and 0, is therefore no longer 

proportional to that parameter. Thus, 0, and 0” both signal a Higgs symmetry 

breaking transition. 

6.2 Phase Structure 

The first step in determining the phase structure of our model is to search 

parameter space to identify those regions where critical slowing occurs in the Monte 

Carlo iteration procedure. Such slowing shows most easily in hysteresis plots [21] 

which are generated by first choosing some initial values for the parameters p, X, and 

7 and then alternatively iterating the system and varying the parameters slightly 

until we have traced a path through parameter space to some final position and back 

again to the original starting point. If the path chosen happens to cross a phase 

transition then the slowing associated with the transition will cause a mismatch 

between the values of the observables as measured during the outgoing and the 

return journeys along the path. This mismatch is exactly the effect we need to 

search for. 

Figure 5 shows the results of a representative sample of such searches at X = 0.1. 

For reference we have also included the mean field predictions for the phase structure 

at this value of X. In this figure the dotted lines represent those paths in parameter 

space which were studied for hysteresis effects. Solid lines represent those pieces 

of path for which a hysteresis signal was observed. The data used to generate this 

plot was obtained mostly on 44 lattices with some checks on 8’ lattices. For the 

horizontal paths the step size choosen was A@ = 0.2. For the vertical paths the 
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step size was a7 = 0.25. In each case we iterated 50 sweeps between steps. This is 

to be compared to a time of one to five sweeps required to equilibrate the system 

from a hot or cold start far from a transition. 

Inspection of Figure 5 suggests that at X = 0.1 there is a single line of phase tran- 

sitions in the model which appears to completely separate the two phases present. 

This result is somewhat surprising in view of the expectations of Section 3 that 

the line of transitions which enters the plot at large p should end at some internal 

point of the plot. Note, however, that both mean field results also show completely 

separate phases at this value of X. We conclude therefore that the limit /3 + 0 

discussed in Section 3.3 has real structure if X is not too large. 

Studies of the observables of Eqn(6.1) at points removed from the transition 

provides us with further information about the nature of the physics involved. Con- 

sider first the horizontal portion of the Monte Carlo transition shown in Figure 5 

which extends from p m 3 to the right hand edge of the plot. Above this line 0~ - 0 

and 0, - 7 indicating the presence of a broken symmetry Higgs sector. Below the 

line 0~ - 1 and 0, - 0 indicating a symmetric Higgs sector. Also as we cross the 

transition we find very little variation in the value of 0”. This behaviour suggests 

that this portion of the transition is simply a symmetry breaking transition occur- 

ring within the Higgs sector of the theory and that the gauge sector is playing no 

part in the dynamics. 

For the portion of the transition to the left of 6 = 2 things are more complicated. 

0” and 0, still show behaviour characteristic of passage from a Higgs symmetric 

phase below the transition line to a Higgs symmetry broken phase above the line. 

However 0” now changes rapidly across the line indicating that the transition is no 

longer confined to just the Higgs sector. 

Finally if we consider the portion of Figure 5 for 7 5 1 we find that the Higgs 

observables show very little activity throughout this region of parameter space. 0” 

on the other hand behaves both qualitatively and quantitatively as for the pure 

SU(2) system. In particular 0~ exhibits a crossover from strong to weak coupling 

at ,f3 z 2.2. Note that this is the region where the mean field analysis predicts a 

first order transition. However because we are working in four dimensions we only 
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see the crossover remnant of this mean field transition in the full theory. 

We can gain even further insight into the nature of the phase structure which we 

have found by studying the order of the phase transition shown in Figure 5. Figure 6 

shows some of the results we have obtained from mixed-phase runs at X = 0.1 [21]. 

Each point plotted here represents typically a thousand iterations on a 4 x 4 lattice. 

For p fixed and large the data shown suggests that 0” is a continuous function of 

7. This behaviour is indicative of a second order transition. For ~3 small, though, 

there appears to be a significant discontinuity present, indicative of a first order 

transition. These characteristic behaviours show also when the other observables 

are studied and when the data for each observable is replotted as a function of @. 

The plot shown in Figure 7 provides further evidence for a first order transition in 

the small p sector. This plot shows the evolution of matched pairs of configurations 

as they switch parameters among themselves. The two sets of parameters used to 

generate this plot were p = 1.3, 7 = -2.4, and p = 1.4, 7 = -2.4. These values are 

quite close together, and are below that value of /3 where discontinuous behaviour 

is first observed (Figure 6). The dotted line which divides this plot identifies the 

point where the parameters are switched. This switch, however, has almost no 

effect on the values being measured, and we must conclude, therefore, that there 

are m&a&able states present, and that a first order phase transition is occurring. 

Combining the results of the hysteresis searches and the mixed phase runs, we 

now conclude that, at X = 0.1, the action of Eqn.(2.4) has a single line of phase 

transitions extending from 7 = 3.8 for small p to 7 M 2.0 for large p. For p small, we 

have good evidence that the transition is first order. For /3 large, on the other hand, 

there is no evidence of a first order transition in any of the studies we performed. 

We shall, therefore, identify the large p transition as a second order transition. 

However, note that we do not eliminate the possibility that this portion of the 

transition may, in fact, be weakly first order. Finally we note that the combination 

of first and second order transitions splits the plane of parameter space at X = 1 

into two separate phases. 

Figure 8 shows the phase structure of our model for various values of X. Each line 

in this plot was generated in a manner similar to that described above. As before, 
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solid lines represent first order transitions, while dashed lines represent second order 

transitions. The exact positions of the first order transitions was determined by the 

positions of the discontinuities associated with the presence of those transitions. For 

second order transitions when the hysteresis signal was large, the position could be 

found by first plotting the action as a function of 7 with p and X held fixed, and 

then identifying the position where this plot shows the greatest rate of change. For 

large values of X, however, this procedure was not necessary, since the hysteresis 

signals there are not very wide, and provide a sufficiently accurate determination 

of the position of the transition. 

Inspection of Figure 8 shows that, for 7 2 0.5 the transition lines are all second 

order, and that each line terminates in the interior of the plot as the discussions 

of Section 3 have led us to expect. This particular region of parameter space is 

equivalent to that studied by Kuhnelt, et al., and the results we have presented 

here are in good agreement with the results reported by those authors. 

For 7 5 0.2, however, we see that some new physics is appearing. We find 

first that a section of the transition becomes first order. Then, as X decreases even 

further, the transition end point moves to the p = 0 edge of parameter space, 

and the two phases present become disconnected. Another point to note about the 

structure at small X is that the Monte Carlo data suggests that the changeover from 

first order to second order occurs at p = 2.1, independently of X. This particular 

value of ,@ is especially significant, since it also describes the crossover from strong 

to weak coupling behaviour in the pure SU(2) gauge theory. 

In Figure 9, we have redrawn the phase transitions for X = 0.1 and X = 1.0 

together with the respective mean field predictions from Section 4. In each case we 

see that the combination gauge fixed and gauge unfixed mean field predictions agree 

quite well with the Monte Carlo result. In particular, the gauge fixed mean field 

results describe well the position of the transition which occurs at small /3, while 

the gauge unfixed mean field results describe well both the position and the order 

of the large p Higgs symmetry breaking transition. Also note that the mean field 

results predict that the changeover in the order of the X = 0.1 transition should 

occur at the same point as the strong to weak transition occurs in the pure SU(2) 
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mean field theory. 

There are some interesting conclusions one can draw from the combination mean 

field and Monte Carlo results we have obtained. Firstly, for /3 2 2.1, we find that 

the gauge fields are all close to the identity and play no role in the the dynamics of 

the large 8 phase transition, which is, therefore, purely a Higgs sector phenomenon. 

For p < 2.1, however, both gauge and Higgs fields are actively involved in the 

transition. Further, both the mean field and Monte Carlo results suggest that, in 

this small p regime, the Higgs radial fluctuations play an important role in the 

transition, since when X is large and the Higgs radial fluctuations are damped, we 

find that the transition extends only a short distance below 13 = 2.1. Finally we 

note that the mean field analysis has suggested a possible mechanism by which a 

single phase line can be be partially first order and partially second order. The 

mean field in fact predicts a triple point at the change in the order. Then, although 

the corrections to the mean field approximation introduced at four dimensions can 

eliminate one of the transitions defining this triple point, they do not necessarily 

eliminate the cooperative effects which seem to give rise to the the difference in 

order of the remaining two lines entering the triple point. 

6.3 Finite Temperature Results 

Let us turn now the finite temperature phase structure of the action of Eqn.(2.4). 

At this point we understand quite well this model’s low temperature phase structure. 

Seemingly, there is just a single phase present, although, depending on one’s choice 

of parameters, this phase can exhibit behaviour typical of either confinement or 

Higgs broken symmetry. At high temperatures we expect this picture to change. 

Thermal fluctuations should disrupt any long-range order associated with the Higgs 

symmetry breaking sector, and at high temperature the presence of a gluon plasma 

should cause deconfinement as in the pure gauge case. 

We have already identified 0” and 0, as “order parameters” for the Higgs 

symmetry breaking transition. We need now to identify an operator sensitive to 

deconfinement due to the presence of a gluon plasma. In the pure SU(2) gauge 

theory the relevant operator is the Wilson line operator 0~ introduced in Eqn.(G.l). 
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We shall use 0~ as a signal of gauge sector deconfinement for our model also, since, 

even in the presence of the Higgs fields, this operator still measures the free energy 

of an infinitely massive quark coupling only to the gauge degrees of freedom 1201. 

However it is important to realise that 0~ is no longer an order parameter since the 

22 symmetry [20], [22] which is probed by this operator in the pure gauge model is 

broken when fundamental Higgs fields are introduced. This feature is just one more 

consequence. of the Higgs-confinement complementarity discussed in Section 3. 

Having determined an appropriate set of observables, we can proceed with the 

finite temperature phase structure analysis. The fundamental ingredient for this 

analysis is the observation that a lattice with a finite extent in the time direction 

has a temperature T given by 

T ~1 
X a 

where Nt is the number of sites in the time direction and a is the lattice spacing 

[23]. The details of the Monte Carlo analysis follow exactly as above. We first try 

to identify the positions of all the transitions present by searching for hysteresis 

signals. Then, mixed phase techniques enable us to determine the orders of these 

transitions. Note, however, that since we are now also interested in how the phase 

structure changes as the temperature changes, we need to repeat this analysis for 

various different choices of Nt. The results which we shall present here were obtained 

from studies of 83 x 2, 83 x 4, 83 x 6, and 8s x 8 lattices. 

If we confine our attention, at first, to the observables introduced in Section 6.1, 

then the Monte Carlo analysis on each of these new lattices produces a phase dia- 

gram exactly as in Figure 8. In particular, we note that there is no significant signal 

of Nt dependent shifts in any of the transitions shown there. This observation, of 

course, does not rule out the presence of such shifts, since they can be sufficiently 

small that they are masked by the inherent statistical uncertainties of the Monte 

Carlo process. This qualification of the Monte Carlo results which we have made is 

important because there is evidence from another source [24] which suggests that 

there might be small Nt dependent shifts in the position of the Higgs symmetry 

breaking transition. The analysis of reference [24] suggests that we should expect a 

shift of less than 5% in the position of the Higgs transitions on the 8s x 2 and 83 x 8 
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lattices. However, a 5% change in the position of the Higgs symmetry breaking 

transition is not sufficient to show above the Monte Carlo uncertainty, so we have 

no additional evidence for or against this shift. 

Let us turn now to the results obtained from a study of the Wilson line operator, 

0~. Figure 10 shows how OL varies as a function of p at two different values of 7. 

This data was obtained from mixed phase studies on an 83 x 2 lattice with X = 0.1. 

We see that, for each value of 7, the expectation value of 0~ changes from small 

to large as p increases. Hysteresis studies show that in each case this changeover 

is associated with a definite hysteresis signal. For 7 = 6, however, hysteresis also 

shows when the other observables are studied, and the position and abrupt nature 

of the change in 0~ tells us that the transition involved is nothing more than the 

first order transition which we already know of from our analyses of those other 

observables. 

For -y = 0, on the other hand, the hysteresis signals show only for 0~. There are 

no such signals when the other variables are studied. This behaviour is analogous to 

that which occurs at the deconfining transition in the pure gauge model. Note also 

that there is no longer any evidence of a discontinuous change in 0~ as B increases. 

Thus we conclude that, at 7 = 0, there is a second order deconfining transition 

similar to that which occurs in the pure gauge model. 

Figure 10 shows only a small sample of the data we have obtained of the be- 

haviour of 0~. One important feature of this data, however, is that for 7 5 2.0 the 

values we obtain for 0~ seem to be independent of 7 and X. This suggests that, 

as long as we remain in the symmetric Higgs phase, the gauge sector deconfining 

transition depends only weakly on these parameters. A comparison of the values 

obtained for 0~ for the pure gauge theory with those obtained for the gauge-Higgs 

theory further reinforces this conclusion since the only distinguishable difference in 

the results of the two models is that in the confined sector of the gauge-Higgs model 

(/3 < 1.5 in Figure 10) 0~ is close to but not identically zero as it is required to be 

in the pure gauge theory. We understand this shift as being due to the presence of 

charged Higgs which can screen a bare fermion. However the fact that the shift in 

0~ is so small, together with the good agreement between the pure gauge model 
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and the combined gauge-Higgs model for 7 < 2.0, suggests that in this sector the 

Higgs is very massive and is therefore decoupling. 

Figure 11 shows how the 7 = 0 data of Figure 10 changes as the lattice size 

changes. We see that the position of the deconfining transition appears to be de- 

pendent on the lattice extent in the time direction. Hysteresis analyses and similar 

studies at other values of 7 and X confirm this observation, and we find that the 

deconfining transition shown in Figure 12 moves to larger values of p as iVt increases 

but is otherwise unchanged. Once again we find that the position of the transition 

appears to be independent of 7 and X. 

This Nt dependent behaviour is very reminiscent of that observed for the pure 

gauge theory, and suggests that we can define a transition temperature T, = (N,a)-’ 

which will remain constant as iVt increases provided that we scale the parameters 

appropriately. The hard part in implementing this suggestion, of course, is to 

determine exactly how p, X and 7 should scale. However, because the position 

of the transition is apparently independent of X and 7, it is clear that p is the 

only parameter which is constrained when we require T, to be independent of a. 

Consider, therefore, the renormalization group equation which defines T, in terms 

of the critical coupling PC in the pure gauge theory [22] 

If we assume that p is the only relevant parameter then a similar equation applies 

in the full theory. The only differences that arise are in the numerical values of 

the constant bo. For the pure gauge theory bo = 44/6, while for the combined 

gauge-Higgs theory b. = 41/6. We find that the numerical data is quite consistent 

with either scaling behaviour. However the discussions above suggest that the more 

probable explanation of this phenomenon is that the scaling is pure gauge and that 

the Higgs decouples as we take a + 0 with 7 and X held fixed. 

Analyses similar to those shown in Figure 11 at other values of 7 and X generate 

the phase structure shown in Figure 12. The vertical dotted lines in this figure show 

how the second order deconfining transition we have just identified behaves as the 

parameters are varied. The other structure shown is already familiar from Figure 8. 
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There are two different features of this plot which need further comment. Firstly, as 

we have already noted, the Monte Carlo data does not show any significant shifts 

in the position of the second order transition as X is varied. Thus, the different 

vertical lines should really lie on top of each other. We have separated them slightly, 

however, to make the details more clear. Secondly, the exact structure at the 

different triple points shown is only tentative, since close to these points all the 

observables show interesting structure and it is therefore very difficult to identify 

exactly what is happening. 

7 Conclusions 

We have presented Monte Carlo and mean field results for the phase structure of 

an SU(2) gauge-Higgs system. For fixed Higgs four point coupling this model has 

a single phase transition line which appears to be second order in the weak gauge 

coupling sector. However, in the strong gauge coupling sector this phase transition 

line can become first order. The fact that the phase transition is second order 

for at least part of its length is encouraging since it allows for the possibility that 

an appropriate scaling of the parameters as a + 0 will produce a real continuum 

theory. Two obvious candidates for the continuum theory which might result are 

the Weinberg-Salam-Glashowmodel of the weak interactions with the fermions and 

U(1) gauge sectors turned off, and the strong coupling Abbot-Farhi model. 

When finite temperature effects are considered, we have identified an extra tran- 

sition in the theory. This transition corresponds to the deconfinement transition in 

the pure gauge model and as long as we remain within the Higgs symmetric phase 

of the gauge-Higgs model this transition appears to be independent of the Higgs 

sector. We conclude that the Higgs decouples very rapidly in this sector of the full 

theory. This result is of interest to current studies of SU(3) systems with dynamical 

fermions since it provides a warning that some considerable care might be needed in 

order to arrange that the fermions introduced into these systems remain dynamical 

when renormalization effects are included. 
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FIGURE CAPTIONS 

1. Phase structure suggested by the analysis of Section 3. The dashed portion 

of the transition shown is an extrapolation. 

2. Mean field prediction for the phase structure of the gauge-Higgs model for two 

different values of X when no gauge fixing is imposed. Solid lines represent 

first order transitions. Dashed lines represent second order transions. Also 

indicated are the values which the mean fields achieve in each sector. 

3. The value of the Higgs mean field b,, which maximizes the unitary gauge 

mean field free energy plotted as a function of p for various values of y. 

4. Mean field prediction for the phase structure of the gauge-Higgs model for 

two different values of X in the unitary gauge. The solid lines shown represent 

first order transitions. 

5. Results of hysteresis studies at X = 0.1 on 4* and 84 lattices. Dotted lines show 

those paths which were studied. Solid lines show where a positive hysteresis 

effect was seen. For reference the mean field results for no gauge fixing (MFl) 

and for the unitary gauge (MF2) are also plotted. 

6. Results of mixed phase studies at X = 0.1. Each point shown represents the 

average of the operator 0~ of approximately 1000 sweeps. 

7. Evolution of the operator 0~ for two different values of p. At the vertical 

dashed line the values of p used to evolve each configuration are swapped. 

8. Monte Carlo predictions for the phase structure of the gauge-Higgs model. 

Solid lines represent first order transitions. Dashed lines represent second 

order transitions. 

9. Comparisons of the Monte Carlo (MC), the mean field with no gauge fixing 

(MFl), and the gauge fixed mean field results (MF2) for two different values 

of x. 
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10. Results of mixed phase studies of the operator On at X = 0.1 on an 83 x 2 

lattice. 

11. Results of mixed phase studies of the operator 0~ at X = 0.1 and 7 = 0.0 on 

83 x 2, 83 x 4, 8s x 6, and 83 x 8 lattices. 

12. Finite temperature phase structure for two different values of X. Solid lines 

represent first order transitions. Dashed lines represent second order transi- 

tions. The new feature appearing in this diagram in the vertical second order 

gauge deconfinement transition (dotted line) identified by the Wilson line op- 

erator. This transition is a temperature dependent feature. This figure shows 

how this line moves as we go from an 83 x 2 lattice to an 83 x 8 lattice., 
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